The contribution of synaptic location to inhibitory gain control in pyramidal cells
نویسندگان
چکیده
THE ACTIVITY OF PYRAMIDAL CELLS IS CONTROLLED BY TWO OPPOSING FORCES: synaptic inhibition and synaptic excitation. Interestingly, these synaptic inputs are not distributed evenly across the dendritic trees of cortical pyramidal cells. Excitatory synapses are densely packed along only the more peripheral dendrites, but are absent from the proximal stems and the soma. In contrast, inhibitory synapses are located throughout the dendritic tree, the soma, and the axon initial segment. Thus both excitatory and inhibitory inputs exist on the peripheral dendritic tree, while the proximal segments only receive inhibition. The functional consequences of this uneven organization remain unclear. We used both optogenetics and dynamic patch clamp techniques to simulate excitatory synaptic conductances in pyramidal cells, and then assessed how their firing output is modulated by gamma-amino-butyric acid type A (GABAA) receptor activation at different regions of the somatodendritic axis. We report here that activation of GABAA receptor on the same dendritic compartment as excitatory inputs causes a rightwards shift in the function relating firing rate to excitatory conductance (the input-output function). In contrast, GABAA receptor activation proximal to the soma causes both a rightwards shift and also a reduction in the maximal firing rate. The experimental data are well reproduced in a simple, four compartmental model of a neuron with inhibition either on the same compartment, or proximal, to the excitatory drive.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملChemical kindling enhances the Schaffer collateral-CAl pyramidal cell synaptic transmission in anesthetized rats
Epilepsy is one of the common disorders in human community. Clinical observations have shown that epileptic patients have often difficulty in learning and memory. Kindling is a laboratory model for studying epilepsy and its complications. This experiment was designed to study the effect of chemical kindling on Schaffer collateral-CA1 pyramidal cell synaptic transmission using pentylenetetrazole...
متن کاملMorphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L
Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...
متن کاملModulation of firing rate by background synaptic noise statistics in rat visual cortical neurons.
It has been shown previously that background synaptic noise modulates the response gain of neocortical neurons. However, the role of the statistical properties of the noise in modulating firing rate is not known. Here, the dependence of firing rate on the statistical properties of the excitatory to inhibitory balance (EI) in cortical pyramidal neurons was studied. Excitatory glutamatergic and i...
متن کاملDifferential Effects of Excitatory and Inhibitory Plasticity on Synaptically Driven Neuronal Input-Output Functions
Ultimately, whether or not a neuron produces a spike determines its contribution to local computations. In response to brief stimuli the probability a neuron will fire can be described by its input-output function, which depends on the net balance and timing of excitatory and inhibitory currents. While excitatory and inhibitory synapses are plastic, most studies examine plasticity of subthresho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2013